Novel Insights into Regulation of Asparagine Synthetase in Conifers
نویسندگان
چکیده
منابع مشابه
Novel Insights into Regulation of Asparagine Synthetase in Conifers
Asparagine, a key amino acid for nitrogen storage and transport in plants, is synthesized via the ATP-dependent reaction catalyzed by the enzyme asparagine synthetase (AS; EC 6.3.5.4). In this work, we present the molecular analysis of two full-length cDNAs that encode asparagine synthetase in maritime pine (Pinus pinaster Ait.), PpAS1, and PpAS2. Phylogenetic analyses of the deduced amino acid...
متن کاملAsparagine synthetase in corn roots.
The level of asparagine synthetase is low in 10-mm root tips from corn seedings (Zea mays W64 x W182F) but relatively high in mature root sections taken 20 to 35 mm from the tip. When root tips are excised there is a marked increase in asparagine synthetase over a 5-hour period. In mature root sections, on the other hand, the asparagine synthetase activity declines over the same 5-hour period. ...
متن کاملInsights into role of microRNAs in cardiac development, cardiac diseases, and developing novel therapies
Objective(s): MicroRNAs (miRNAs) are a subfamily of small noncoding RNAs that play a variety of roles in regulating gene expression in nearly all organisms. They affect different biological pathways by post-transcriptionally regulating mRNAs. Aside from miRNAs’ role in maintaining cellular homeostasis, their perturbation is related to several pathologic states and dis...
متن کاملNovel insights into Notum and glypicans regulation in colorectal cancer.
The connection between colorectal cancer (CRC) and Wnt signaling pathway activation is well known, but full elucidation of the underlying regulation of the Wnt/β-catenin pathway and its biological functions in CRC pathogenesis is still needed. Here, the azoxymethane/dextran sulfate sodium salt (AOM/DSS) murine model has been used as an experimental platform able to mimic human sporadic CRC deve...
متن کاملNovel insights into the regulation of the timeless protein.
In the Drosophila circadian clock, period (per) and its partner, timeless (tim), play a central role in the negative limb of an autoregulatory feedback loop. Unlike per, the dosage of which affects the frequency (tau) of the circadian cycle, we found that increasing copies of the tim gene has no effect on clock period length. The use of the tim promoter to express per results in a shortening of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Plant Science
سال: 2012
ISSN: 1664-462X
DOI: 10.3389/fpls.2012.00100